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Abstract— We consider the continuous-time temporal differ-
ence (TD) learning dynamics with nonlinear value function
approximations, where there is a slim understanding of the
convergence properties in irreversible regimes. Motivated by
Krener’s linearization idea ala Lie-brackets, we obtain con-
ditions on the approximating value function and irreversibility
coeffients under which the TD dynamics behaves close to a gra-
dient flow. We show that our conditions lead to a set of partial
differential equations, and study the existence of solutions using
the algebraic invertibility of differential operators. Whenever
a solution exits, using a perturbation analysis, we provide a
stability result for nonlinear TD dynamics. As a by-product,
we state the implications of the results for the classical case of
linear approximations, where our conditions are algebraic, and
easily verifiable.

I. INTRODUCTION

This paper is concerned with the nonlinear temporal
difference learning dynamics [1]. We consider a Markov
Reward Process (MRP) with a finite number of states s
selected from a set S of cardinality n. We denote the
probability that the next state is snext by P (snext|s), with
r(s, snext) being the expected reward. Even though this
assumption can be relaxed, to focus on the main idea of
the paper, throughout we assume that that the underlying
Markov process is aperiodic and irreducible, with a stationary
distribution denoted by µ.

The classical setting under study here is an infinite-horizon
stochastic reward: denoting by rt the random variable repre-
senting the reward at a given time t, our goal is to find the
true value function

V ∗(s) = E

[ ∞∑
t=0

γtrt

]
,

starting from a given initial state s0 = s, where γ ∈ (0, 1)
is the discount factor.

Even though one could consider obtaining the value func-
tion using Bellman’s equation or value iteration [10], in
practice, the underlying probability transition matrix is not
known; indeed, we often only have access to a sequence
of actions/rewards (s0, r1, s1, r2, · · · ). The main idea behind
Temporal Difference (TD) learning method introduced in [9]
is as follows: suppose that at state st we have an estimate of
the true value function V ∗ denoted by V (st). Note that we
have obtained a reward rt+1 at state st. Now, given that the
next state is st+1, by the Bellman’s principle, we ask if our
estimated value function is consistent with rt+1+γV (st+1).
The term “temporal difference” hence naturally refers to

rt+1 + γV (st+1)− V (st).

The temporal difference learning dynamics TD(0) is there-
fore constructed by updating our estimate of the value
function to

V (st) + αt (rt+1 + γV (st+1)− V (st)) ,

where αt is an appropriately chosen step-size. In the tabular
setting (no function parameterization), by slightly abusing
the notation, we denote by Vt our estimate of the true value
function at iteration t, and along a sample path, write the
TD(0) update as

Vt+1(s) = Vt(s) + αt (r(s, snext) + γVt(snext)− Vt(s)) .

It is well known that when the system and the learning rate
αt satisfy standard stochastic approximation conditions, the
averaged dynamics is a discretized and sampled version of
the expected continuous dynamics given by

V̇ (s) = µ(s)(R(s) + γE(V (snext))− V (s)), (1)

where
R(s) = E[r(s, snext)],

and the expectation is taken with respect to the underlying
Markov process P . Using this fact, and following the nota-
tions in [1], we rewrite (1) in vector form as

V̇ = Dµ(R+ γPV − V ), (2)

where Dµ is a diagonal matrix with diagonal being the
entries of µ. It is worth pointing out that V here is a function
of µ, even though we ignore explicitly indexing it. Note that
by Bellman’s equation, R satisfies

R = V ∗ − γPV ∗,

and hence we can write (2) as

V̇ = −Aµ(V − V ∗), (3)

where
Aµ = Dµ(I − γP ).

Note that while Aµ is only symmetric when the MRP is
reversible, it is always positive definite in the sense that
x⊤Aµx > 0 for nonzero x due to 1

2 (Aµ + A⊤
µ ) being

symmetric positive definite [9].

This setup where we directly update the value function
estimate vector V is called the tabular setting. For this
specific setting, we have that under the aforementioned
conditions, the dynamics (3) always converges to V ∗ [9].
However, in most realistic settings, the cardinality of S is too
large to employ a tabular approach, and hence, we naturally



parameterize V by θ ∈ Rm where m << n, and denote it
by V (θ) ∈ Rn. We now focus on ODE associated with the
TD(0) update in terms of the underlying parameter, i.e.,

θ̇(t) = −∇V (θ(t))⊤Aµ(V (θ(t))− V ∗). (4)

In the classical setting, V (θ) is often assumed to be linear,
in that it is assumed that there are linearly independent
features functions ϕi, where i ∈ {1, . . . ,m} such that

V linear
θ (s) =

m∑
i=1

θiϕi(s);

denoting by Φ the matrix with columns ϕi, this equation can
be written as

V linear
θ = Φθ. (5)

It is well-known that under linear function approximation,
when Φ is a full rank feature matrix, TD(0) converges to
a unique fixed point [12]. The proof utilizes the fact that
in the linear case, letting θ∗ = (Φ⊤AµΦ)

−1Φ⊤AµV
∗, the

dynamics (4) become:

θ̇(t) = −Φ⊤AµΦ(θ − θ∗), (6)

and the positive definiteness of Aµ results in global conver-
gence to θ∗.

In recent applications, neural networks have been em-
ployed to approximate V (θ), challenging the linear assump-
tion. The nonlinear TD(0) dynamics is explored in [11];
notably, it’s demonstrated that for a reversible underly-
ing Markov chain, the TD(0) dynamics acts as a gradi-
ent flow [8]. Yet, the TD(0) dynamics generally does not
constitute a gradient flow, even in linear scenarios1. In a
recent work [1], interesting findings are presented for the
case where the value function is assumed as a homogeneous
function. It is important to note that even in this scenario,
despite some preliminary results, the convergence character-
istics remain incompletely understood.

II. TD(0) AND TRANSFORMATIONS

Our investigation begins by exploring the extent to which
the TD(0) dynamics deviates from being a gradient flow.
Gradient flows are naturally defined with respect to a metric
and hence it becomes pertinent to inquire about the specific
metric when considering whether a particular flow qualifies
as a gradient flow, or an approximate to one. It is possible to
directly explore this perspective, by asking for the existence
of a metric that turns the nonlinear TD(0) into a gradient
flow. We instead explore a different perspective with more
relaxed conditions stemming from Krener’s idea of feedback
linearization [6].

To wit, let us rewrite (4) as

θ̇(t) = −S (θ(t)) + A (θ(t)), (7)

1It is noteworthy to mention [7], where “gradient splitting” is introduced
and applied to achieve precise convergence rates for TD(0). This concept,
though, is limited to linear approximations.

where

S (θ(t)) := ∇V (θ(t))⊤(
1

2
(Aµ +A⊤

µ ))(V (θ(t))− V ∗)

A (θ(t)) := −∇V (θ(t))⊤(
1

2
(Aµ −A⊤

µ ))(V (θ(t))− V ∗).

Clearly, S is a gradient, and in particular, for θ ∈ Rm

S (θ) = ∇1

2
∥V (θ)− V ∗∥21

2 (Aµ+A⊤
µ ),

due to 1
2 (Aµ + A⊤

µ ) being a symmetric positive definite
matrix. We naturally consider the case where the added term
A (θ(t)) to this gradient is parameterized by a constant h ≥ 0
by letting

hΩµ :=
1

2
(Aµ −A⊤

µ ),

where Ωµ is skew-symmetric. We also let

Sµ :=
1

2
(Aµ +A⊤

µ ).

In this sense, from this point onwards, the matrix with respect
to which (4) is studied is Sµ + hΩµ. As a result, (7) can be
rewritten as

θ̇(t) = −S (θ(t)) + hAΩ(θ(t)), (8)

where

S (θ(t)) := ∇V (θ(t))⊤Sµ(V (θ(t))− V ∗)

AΩ(θ(t)) := −∇V (θ(t))⊤Ωµ(V (θ(t))− V ∗).

As previously mentioned, Sµ is positive definite, and hence
non-singular. We denote the Lie bracket of two given vector
field X and Y on Rm by [X,Y ]. With this notation in place,
we have the following result.

Proposition 2.1: Consider (7) and suppose that there ex-
ists a transformation Th : Rm → Rm that satisfied

[S (x),Th(x)] = A (x), (9)

for all x ∈ Rm and is naturally of order h, i.e.,

Th(x) = hT̃(x),

for T̃ ∼ O(1) in terms of h. Then

z(t) = θ(t) +Th(θ(t)) (10)

satisfies
ż(t) = −S (z(t)) + h2Rh(z(t)), (11)

where

Rh(z)

=
∂T̃

∂θ

(
(I +Th)−1(z)

)
AΩ

(
(I +Th)−1(z)

)
+
(
T̃
(
(I +Th)−1(z)

))⊤
∇2S

(
(I +Th)−1(z)

)
×
(
T̃
(
(I +Th)−1(z)

))
− 1

2

(
T̃
(
(I +Th)−1(z)

))⊤
∇2S (z)

×
(
T̃
(
(I +Th)−1(z)

))
+O(h). (12)



The proof follows from a more general statement presented
below.

Lemma 2.2: Consider the dynamics:

ẋ(t) = −∇f(x(t)) + Fh(x(t)), (13)

where x(t) ∈ Rm for all t ≥ 0, f : Rm −→ R and Fh :
Rm −→ Rm are smooth vector fields, and Fh(·) is in O(h)
with h > 0, i.e.,

Fh(x) = hF̃ (x),

for F̃ ∼ O(1) in terms of h. Suppose that there exists a
transformation Th : Rm → Rm such that

Fh(x) =
[
∇f(x),Th(x)

]
, (14)

for all x ∈ Rm and is naturally of order h, i.e.,

Th(x) = hT̃(x),

with T̃ ∼ O(1) in terms of h. Then

ż(t) = −∇f(z(t)) + h2Rh(z),

where
z = x+Th(x),

and Rh(z) is of order O(1) in h and is given by

Rh(z)

=
∂T̃

∂x

(
(I +Th)−1(z)

)
F̃
(
(I +Th)−1(z)

)
+
(
T̃
(
(I +Th)−1(z)

))⊤
∇3f

(
(I +Th)−1(z)

)
×
(
T̃
(
(I +Th)−1(z)

))
− 1

2

(
T̃
(
(I +Th)−1(z)

))⊤
∇3f(z)

×
(
T̃
(
(I +Th)−1(z)

))
+O(h).

Proof: We have that

ż =ẋ+
∂Th

∂x
ẋ

=(In +
∂Th

∂x
(x))(−∇f(x) + Fh(x))

=−∇f(z −Th(x))− ∂Th

∂x
(x)∇f(x)

+ Fh(x) +
∂Th

∂x
(x)Fh(x), (15)

where ∂Th

∂x is the Jacobian of Th. Approximating now

∇f(z −Th(x)) =∇f(z)−∇2f(z)Th(x)

+
1

2
Th(x)⊤∇3f(z)Th(x) +O(h3),

and for h small enough,

∇2f(z) = ∇2f(x+Th(x))

= ∇2f(x) +Th(x)⊤∇3f(x) +O(h2).

Thus, we can rewrite this as

∇f(z −Th(x))

=∇f(z)−
(
∇2f(x) +Th(x)⊤∇3f(x) +O(h2)

)
Th(x)

+
1

2
Th(x)⊤∇3f(z)Th(x) +O(h3)

(i)
=∇f(z)−∇2f(x)Th(x)−Th(x)⊤∇3f(x)Th(x)

+
1

2
Th(x)⊤∇3f(z)Th(x) +O(h3), (16)

where (i) follows from Th(x) ∼ O(h) and therefore
O(h2)Th(x) ∼ O(h3). Substituting (16) in (15),

ż =−∇f(z) + Fh(x)−
(
∂Th

∂x
∇f(x)−∇2f(x)Th(x)

)
+

∂Th

∂x
(x)Fh(x) +Th(x)⊤∇3f(x)Th(x)

− 1

2
Th(x)⊤∇3f(z)Th(x) +O(h3)

(i)
= −∇f(z) + h2

(
∂T̃

∂x
(x)F̃ (x) + T̃(x)⊤∇3f(x)T̃(x)

− 1

2
T̃(x)⊤∇3f(z)T̃(x) +O(h)

)
,

where (i) follows from (14). The proof concludes after
replacing x with (I +Th)−1(z).

It is worth displaying the term denoted by ∇2S in (12)
in components. Note that

Si =

m∑
k,ℓ=1

∂Vk

∂θi
Sµ
kℓ(Vℓ − V ∗

ℓ )

∂Si

∂θj
=

m∑
k,ℓ=1

∂2Vk

∂θi∂θj
Sµ
kℓ(Vℓ − V ∗

ℓ ) +
∂Vk

∂θi
Sµ
kℓ

∂Vℓ

∂θj
,

and hence

∂2Si

∂θj∂θp
=

m∑
k,ℓ=1

∂3Vk

∂θp∂θi∂θj
Sµ
kℓ(Vℓ − V ∗

ℓ ) +
∂2Vk

∂θi∂θj
Sµ
kℓ

∂Vℓ

∂θp

+
∂2Vk

∂θi∂θp
Sµ
kℓ

∂Vℓ

∂θj
+

∂Vk

∂θi
Sµ
kℓ

∂2Vℓ

∂θj∂θp
.

In particular, this term is zero when the approximation to the
value function is linear.

Note that in the regime where h is small, existence of such
a transformation would bring the dynamics (7) closer to a
gradient flow. We will explain shortly why this is useful when
one studies convergence properties of TD(0), but before we
do that, let us dwell on the existence of such a transformation.
Even though the main focus of this paper is on nonlinear
temporal difference learning, it is fruitful to start with the
linear case (5).

III. LINEAR CASE

We start with a result which characterizes the existence
of the transformation (10) for the case where the TD(0)
approximation is linear.



Proposition 3.1: Consider the TD(0) dynamics with the
the value function approximated linearly as in (5). Suppose
that the matrices[

Φ⊤SµΦ 0
0 Φ⊤SµΦ

]
and

[
Φ⊤SµΦ hΦ⊤ΩµΦ

0 Φ⊤SµΦ

]
(17)

are similar. Then there exits a transformation matrix Th such
that the dynamics (4) in coordinates given by (10) reads as

ż(t) = −S (z(t)) + h2Rh(z(t)), (18)

where Rh(z) can be computed using (12).

Proof: As before, let us denote the linear approximation
of the value function by V linear

θ = Φθ, where Φ is of full
column rank. We seek for a transformation of the form

Th(θ) = Kh
1 θ +Kh

2 , (19)

where Kh
1 ∈ Rm×m and Kh

2 ∈ Rm, which satisfies (9).
Expanding the latter equation with this choice of Th, we
conclude that Kh

1 and Kh
2 need to satisfy

Kh
1Φ

⊤Sµ(Φθ − V ∗)− Φ⊤SµΦ(Kh
1 θ +Kh

2 )

= −hΦ⊤Ω(Φθ − V ∗).

As a result,

Φ⊤SµΦKh
1 −Kh

1Φ
⊤SµΦ = hΦ⊤ΩΦ (20)

−Kh
1Φ

⊤SµV ∗ − Φ⊤SµΦKh
2 = hΦ⊤ΩV ∗. (21)

Given that Sµ is non-singular, and Φ is of full column
rank, one can find Kh

2 uniquely from the second equation,
given that there exists Kh

1 satisfying the first one. Using
Lemma 5.1, a solution Kh

1 to the first equation exists if and
only if the matrices[

Φ⊤SµΦ 0
0 Φ⊤SµΦ

]
and

[
Φ⊤SµΦ hΦ⊤ΩµΦ

0 Φ⊤SµΦ

]
are similar, which is assumed in the statement of the
proposition. This shows that (19) satisfies the conditions of
Proposition 2.1. The result then follows by substituting this
transformation and using the linearity of the approximating
value function to compute the remainder term.

Although this condition tends to hold for most cases, there
are few instances of it failing. To have a concrete toy example
at hand, note that for Φ = (Sµ)−1/2, the conditions of
Proposition 3.1 fail as the left-hand side of (20) will vanish,
while the right-hand side may not. Moreover, we provide the
following sufficient condition:

Lemma 3.2: A sufficient condition for the similarity men-
tioned in Proposition 3.1 to hold is the case that Φ⊤SµΦ has
distinct eigenvalues.

Proof: Since Φ⊤SµΦ ∈ Rm×m is symmetric, there
exists orthogonal matrix P such that

P⊤Φ⊤SµΦP =

λ1

. . .
λm

 =: D.

Therefore, let

T1 :=

[
P⊤ 0
0 P⊤

]
,

and observe that due to the orthogonality of P ,

T−1
1 =

[
P 0
0 P

]
= T⊤

1 .

Now note that the matrices[
Φ⊤SµΦ 0

0 Φ⊤SµΦ

]
and

[
Φ⊤SµΦ hΦ⊤ΩµΦ

0 Φ⊤SµΦ

]
from (17) are similar if and only if the matrices

T1

[
Φ⊤SµΦ 0

0 Φ⊤SµΦ

]
T−1
1

=

[
P⊤ 0
0 P⊤

] [
Φ⊤SµΦ 0

0 Φ⊤SµΦ

] [
P 0
0 P

]
=

[
D 0
0 D

]
and

T1

[
Φ⊤SµΦ hΦ⊤ΩµΦ

0 Φ⊤SµΦ

]
T−1
1

=

[
P⊤ 0
0 P⊤

] [
Φ⊤SµΦ hΦ⊤ΩµΦ

0 Φ⊤SµΦ

] [
P 0
0 P

]
=

[
D hP⊤Φ⊤ΩΦP
0 D

]
are similar. Now let us denote the skew-symmetric matrix
hP⊤Φ⊤ΩΦP by W . Moreover, we define

T2 :=

[
I X
0 I

]
,

for some X ∈ Rm×m which will be computed later. It is
easy to show

T−1
2 =

[
I −X
0 I

]
.

Now note that

T2

[
D W
0 D

]
T−1
2 =

[
I X
0 I

] [
D W
0 D

] [
I −X
0 I

]
=

[
D W +XD
0 D

] [
I −X
0 I

]
=

[
D W − (DX −XD)
0 D

]
.

Thus, if we show there exists X that can satisfy

DX −XD = W, (22)

we have shown the similarity of [D 0
0 D ] and [D W

0 D ], and
hence, finished the proof. In order to do so, observe that
due to D being a diagonal matrix, (22) becomes

(DX −XD)ij = (λi − λj)Xij = Wij , (23)

for any i, j ∈ {1, 2, . . . ,m}. As a result of the skew-
symmetry of W , the equation (23) is readily satisfied for
i = j. Furthermore, for i ̸= j, as D is assumed to have
distinct eigenvalues, i.e. λi ̸= λj for i ̸= j, we can choose

Xij =
Wij

λi − λj
,



which satisfies (22), concluding the proof.

As we have mentioned before, the convergence of TD(0)
dynamics in the linear case can be obtained directly with-
out the need for approximations by gradient dynamics ala
Proposition 3.1; this is in particular the case in light of the
recent results in [7], where it is shown that in the linear case,
TD(0) can be cast as a gradient splitting. This being said, our
results focus more on the trajectories of the dynamics and
how close to a gradient flow it can be shown to be (compared
to just focusing on convergence to some point). Furthermore,
investigating the convergence properties of TD(0) for the
linear case provides a useful preparation for our later results
in nonlinear settings. We have the following result.

Theorem 3.3: Consider the TD(0) dynamics with linear
approximation (5), and suppose that (17) holds. Let z∗ be the
equilibrium of (18) with h = 0, and Z = {z ∈ Rm | ∥z −
z∗∥ < r}, where r > 0. Suppose that

h2∥Rh(z)∥ ≤ δ < βr

√
λ5

min(Φ
⊤SµΦ)

λ3
max(Φ

⊤SµΦ)
, (24)

for some adjustable β ∈ (0, 1) and all z ∈ Z. Then after a
finite time

T ≤ max

{
0,

λmax(Φ
⊤SµΦ)

(1− β)λ2
min(Φ

⊤SµΦ)
ln

rβλ2
min(Φ

⊤SµΦ)

δλmax(Φ⊤SµΦ)

}
,

the trajectory of (18) from z0 with ∥z0 − z∗∥ ≤
r
√

λmin(Φ⊤SµΦ)
λmax(Φ⊤SµΦ)

satisfies

∥z(t)− z∗∥ ≤ δ

β

√
λ3

max(Φ
⊤SµΦ)

λ5
min(Φ

⊤SµΦ)
,

for all t ≥ T .

Proof: Since (17) holds, there exists a transformation
Th such that the dynamics (4) in coordinates given by(10)
results in (18). When h = 0, the dynamics (18) reads

ż(t) = −Φ⊤SµΦ(z − z∗).

Clearly, V(z) = 1
2∥Φ(z − z∗)∥2Sµ is a Lyapunov function

which, since Φ is of full rank and Sµ is PD, decays
exponentially along the trajectories, because

V̇(z) ≤ −λmin((Φ
⊤SµΦ)2)∥z − z∗∥2.

This, along with the assumption that Φ is of full rank, proves
that (18) with h = 0 is exponentially stable. Note that

1

2
λmin(Φ

⊤SµΦ)∥z−z∗∥2

≤ V(z) ≤ 1

2
λmax(Φ

⊤SµΦ)∥z − z∗∥2,

and

∥∂V
∂z

∥ ≤ λmax(Φ
⊤SµΦ)∥z − z∗∥.

We now consider the perturbed dyanmics (18). Suppose
that (24) holds on the set Z, and that (18) is initialized at
z0 ∈ Z with ∥z0∥ ≤ r

√
λmin(Φ⊤SµΦ)
λmax(Φ⊤SµΦ)

. Gathering all these

observations, the non-vanishing perturbation result in [5,
Lemma 9.2] readily yields the proof.

It is natural to ask what happens if we apply the same
non-vanishing perturbation analysis directly to (7). Indeed,
the previous result applies verbatim to this case, with the
exception that condition (24) is replaced with

h∥Φ⊤ΩµΦ(θ(t)− θ∗)∥ ≤ δ < βr

√
λ5

min(Φ
⊤SµΦ)

λ3
max(Φ

⊤SµΦ)
.

Given that Rh(z) is of order O(1) in h, the transformation
that has allowed us to bring the dynamics closer to a gradient
flow yields a larger range of h for which we can have some
guarantees on the behavior of trajectories. We provide a more
thorough investigation of this in the next section.

A. Impact of the Transformation on the Size of h Required
by the Non-vanishing Perturbation Analysis

In this part, we investigate how the existence of a trans-
formation that can satisfy the condition in Proposition 3.1
can alleviate the requirement on the size of h based on the
non-vanishing perturbation analysis. First of all, recall that
we pick

Th(θ) = Kh
1 θ +Kh

2 ,

and let K1 := 1
hK

h
1 so that K1 has to satisfy

Φ⊤SµΦK1 −K1Φ
⊤SµΦ = Φ⊤ΩΦ,

which is independent of h. Moreover, note that due to this
transformation, we have

z(t) = θ(t) +Th(θ(t)) = (I + hK1)θ(t) +Kh
2

z∗ = (I + hK1)θ
∗ +Kh

2 ,

where θ∗ and z∗ are the equilibria of the original system and
the post-transformation system respectively. As a result,

∥z(t)− z∗∥ = ∥(I + hK1)(θ(t)− θ∗)∥
≤ (∥I∥+ h∥K1∥)∥θ(t)− θ∗∥
= (1 + h∥K1∥)∥θ(t)− θ∗∥, (25)

and

∥z(t)− z∗∥ = ∥(I + hK1)(θ(t)− θ∗)∥
≥ (σmin(I)− h∥K1∥)∥θ(t)− θ∗∥
= (1− h∥K1∥)∥θ(t)− θ∗∥. (26)

Now we move on to apply the analysis both on the original
system (with θ) and the system after the transformation (with
z). Note that the non-perturbed parts of the systems are the
same, so we reuse the arguments made in 3.3 for the two
cases as follows:

1) For the original system, let

Θ = {θ ∈ Rm | ∥θ − θ∗∥ < r}.

Thus, it needs to hold for all θ ∈ Θ that

h∥Φ⊤ΩµΦ(θ − θ∗)∥ ≤ δ < βr

√
λ5

min(Φ
⊤SµΦ)

λ3
max(Φ

⊤SµΦ)
,



which, due to the definition of Θ, implies

h∥Φ⊤ΩµΦ∥r ≤ δ < βr

√
λ5

min(Φ
⊤SµΦ)

λ3
max(Φ

⊤SµΦ)
. (27)

Now applying the analysis as before, we get that after
a finite time τ1, the trajectories from θ(0) with

∥θ(0)− θ∗∥ ≤ r

√
λmin(Φ⊤SµΦ)

λmax(Φ⊤SµΦ)
(28)

satisfy

∥θ(t)− θ∗∥ ≤ δ

β

√
λ3

max(Φ
⊤SµΦ)

λ5
min(Φ

⊤SµΦ)
, (29)

for all t ≥ τ1.
2) For the transformed system, let

Z = {z ∈ Rm | ∥z − z∗∥ < r′}.

Thus, after calculating from (12) that for the linear case,

Rh(z) = Φ⊤ΩµΦ(θ − θ∗)

= Φ⊤ΩµΦ(I + hK1)
−1(z − z∗),

we note that it needs to hold for all z ∈ Z that

h2∥Φ⊤ΩµΦ(I + hK1)
−1(z − z∗)∥

≤ δ′ < βr′

√
λ5

min(Φ
⊤SµΦ)

λ3
max(Φ

⊤SµΦ)
. (30)

Therefore, since for all z ∈ Z,

h2∥Φ⊤ΩµΦ(I + hK1)
−1(z − z∗)∥

≤ h2∥Φ⊤ΩµΦ∥∥(I + hK1)
−1∥∥(z − z∗)∥

≤ h2∥Φ⊤ΩµΦ∥ r′

σmin(I + hK1)

≤ h2∥Φ⊤ΩµΦ∥ r′

1− h∥K1∥
,

it suffices to satisfy that

h2∥Φ⊤ΩµΦ∥ r′

1− h∥K1∥
≤ δ′ < βr′

√
λ5

min(Φ
⊤SµΦ)

λ3
max(Φ

⊤SµΦ)
.

(31)
Now applying the analysis as before, we get that after
a finite time τ2, the trajectories from z(0) with

∥z(0)− z∗∥ ≤ r′

√
λmin(Φ⊤SµΦ)

λmax(Φ⊤SµΦ)
(32)

satisfy

∥z(t)− z∗∥ ≤ δ′

β

√
λ3

max(Φ
⊤SµΦ)

λ5
min(Φ

⊤SµΦ)
, (33)

for all t ≥ τ2. Now if we pick

r′ = r(1 + h∥K1∥) and δ′ = δ(1− h∥K1∥),

we have that due to (25), the z(0) starting points in
(32) include (but are not limited to) all the respective

θ(0) starting points of (28). Moreover, due to the
specific choice of δ′ and on account of (26), having z(t)
converge to the neighborhood (33) immediately implies
convergence of the respective θ(t) to (29).

In conclusion, using the transformed system, we can guaran-
tee the convergence of the trajectories starting from a wider
set of initial points than (28) to a narrower set of endpoints
around the equilibrium than (29). The difference between
the two cases would be the demanded conditions of the two
cases on the perturbation, which for the first case, as shown
in (27), is

h∥Φ⊤ΩµΦ∥r ≤ δ ⇒ h ≤ δ

r∥Φ⊤ΩµΦ∥
, (34)

whereas for the second case, as mentioned in (31) and
following our choice of δ′ and r′, we only need

h2∥Φ⊤ΩµΦ∥ r′

1− h∥K1∥
≤ δ′ ⇒

h2∥Φ⊤ΩµΦ∥r(1 + h∥K1∥)
1− h∥K1∥

≤ δ(1− h∥K1∥) ⇒

h2 1 + h∥K1∥
(1− h∥K1∥)2

≤ δ

r∥Φ⊤ΩµΦ∥
. (35)

So for instance, when the right-hand side δ
r∥Φ⊤ΩµΦ∥ is

desired around 0.1 and K1, which is independent of h, is
of unit 2-norm (which is a reasonable value in examples),
condition (34) requires h ≤ 0.1 whereas condition (35)
only needs h ⪅ 0.222 which allows much more room for
perturbation which, in the case of TD, can be interpreted as
the irreversibility of the original MRP.

IV. NONLINEAR CASE

We now arrive at the main part of this paper, where we
deal with the nonlinear TD(0) dynamics. Our objective is to
find a transformation Th such that

A (θ) =
∂Th

∂θ
(θ)S (θ)− ∂S

∂θ
(θ)Th(θ), (36)

where

S (θ) = ∇V (θ)⊤Sµ(V (θ)− V ∗)

A (θ) = −∇V (θ)⊤hΩµ(V (θ)− V ∗).

Whenever such a transformation exists, we can invoke
Proposition 2.1, which implies that for small values of h,
the nonlinear TD(0) dynamics approximate, in a sense that
will be made precise, a gradient flow. First, note that V :
Rm → Rn, in that for a given θ, V (θ) is an n-dimensional
vector where each component is the approximation of the
value function of the corresponding state s ∈ S. Using this
and following through the calculations, it is clear that S
maps Rm to Rm. Keeping this in mind, we write (36) in
coordinates as

Ai(θ) =
∑
k

∂Th
i

∂θk
(θ)Sk(θ)−

∂Si

∂θk
(θ)Th

k(θ). (37)



Equation (37) provides us with a partial differential equa-
tions on T. We now discuss the existence of solutions to
such equation, conveniently following Gromov’s algebraic
approach (see [3, Chapter 2], and Subsection V-A), simplified
and adopted to the discussions here. To wit, let us define the
differential operator L with

L(T) = −(∇S )T+

m∑
ℓ=1

Sℓ
∂T

∂θℓ
,

and note that (37) can be written as

L(Th) = A . (38)

We show later in Proposition 5.2 that this system of par-
tial differential equations (37) does not generically have a
solution as it corresponds to the determined case (q = m)
of Proposition 5.2. It is important to note that this does not
mean that (37) never has a solution; indeed, the next example
shows that in some scenarios a solution can be found.

Example 4.1: Consider the example with m = n = 2, and
the dynamics

Aµ =

[
2 1.1
0.9 1

]
,

and hence,

Sµ =

[
2 1
1 1

]
and hΩµ = 0.1

[
0 1
−1 0

]
,

where you can take h = 0.1 and Ωµ =
[

0 1
−1 0

]
. Moreover,

let

V (θ) =

[
θ21 + 2θ1θ2 + θ22 + θ1
θ21 + 2θ1θ2 + θ22 + θ2

]
,

and thus,

∇V (θ) =

[
2(θ1 + θ2) + 1 2(θ1 + θ2)
2(θ1 + θ2) 2(θ1 + θ2) + 1

]
.

Taking V ∗ = 0 for simplicity, we have

S (θ) = ∇V (θ)⊤
[
2 1
1 1

]
V (θ)

=

[
10(θ1 + θ2)

3 + 9θ21 + 16θ1θ2 + 7θ22 + 2θ1 + θ2
10(θ1 + θ2)

3 + 8θ21 + 14θ1θ2 + 6θ22 + θ1 + θ2

]
,

and

A (θ) = −0.1 ∇V (θ)⊤
[
0 1
−1 0

]
V (θ)

= 0.1

[
θ21 − 2θ1θ2 − 3θ22 − θ2
3θ21 + 2θ1θ2 − θ22 + θ1

]
.

Now the transformation

Th(θ) = 0.1

[
−(θ1 − θ2)
θ1 − θ2

]
= 0.1

[
−1 1
1 −1

]
θ

satisfies (37) as

[S (θ),Th(θ)]

=
∂Th

∂θ
(θ)S −∇S (θ)Th(θ)

=0.1

[
−θ21 − 2θ1θ2 − θ22 − θ1
θ21 + 2θ1θ2 + θ22 + θ1

]
+ 0.1

[
2θ21 − 2θ22 + θ1 − θ2

2θ21 − 2θ22

]
=0.1

[
θ21 − 2θ1θ2 − 3θ22 − θ2
3θ21 + 2θ1θ2 − θ22 + θ1

]
=A (θ).

We present the trajectories of the original and transformed
systems for initial conditions θ(0) =

[−1
3

]
and z(0) =

θ(0) +Th(θ(0)) respectively in Figure 1. This verifies that
the trajectories of the transformed system can be shown to be
closer to the gradient flow compared to the original system.

At last, we state a generalization of Theorem 3.3.

Theorem 4.2: Consider the nonlinear TD(0) dynamics (7),
and suppose that V is such that (38) has a solution. Suppose
that z∗ is a uniformly asymptotically stable equilibrium
of (11) with h = 0, and Z = {z ∈ Rm | ∥z − z∗∥ < r},
where r > 0, and suppose that there exists class K functions
α1, α2, α3, and α4 such that

α1(∥z − z∗∥) ≤ E(z) ≤ α2(∥z − z∗∥), (39)

α3(∥z − z∗∥) ≤ ∥∇E(z)∥2 ≤ α4(∥z − z∗∥), (40)

for z ∈ Z, where E(z) = 1
2∥V (z)− V ∗∥2Sµ . If we have that

h2∥Rh(z)∥ ≤ δ <
βα3(α

−1
2 (α1(r)))√
α4(r)

, (41)

for some adjustable β ∈ (0, 1) and all z ∈ Z, then after a
finite time T , the trajectory of (11) from z0 with ∥z0−z∗∥ ≤
α−1
2 (α1(r)) satisfies

∥z(t)− z∗∥ ≤ α−1
1

(
α2

(
α−1
3

(
δ
√

α4(r)

β

)))
=: ρ(δ).

The proof of this follows immediately from [5, Lemma 9.3].

Remark 4.3: Note that assumption (39) is reasonable and
easy to verify. Assumption (40), however, is more involved
and along with (41) provides conditions related to the matrix
∇V (z)∇V (z)⊤. This matrix shapes the dynamics of TD and
in the case of neural networks under particular assumptions
it is known as the neural tangent kernel [4] (there is a similar
condition on this matrix in [1, Theorem 3]). Indeed,

∥∇E(z)∥2 = ∥S (z)∥2

≤ 2λmax(S
µ)E(z)∥∇V (z)∇V (z)⊤∥

≤ 2λmax(S
µ)α2(∥z − z∗∥)∥∇V (z)∇V (z)⊤∥.



Fig. 1. Sample trajectory of the original and transformed systems compared to the gradient flow (Example 4.1).

V. SUMMARY & CONCLUSION

We investigated the convergence properties of continuous-
time temporal difference (TD) learning dynamics, focus-
ing on both linear and nonlinear cases. Our analysis used
Krener’s linearization techniques and explored conditions
under which the TD dynamics can be brought closer to a
gradient flow. For the linear case, we already know that when
the feature matrix is full rank, TD(0) converges to a unique
fixed point. However, we introduced the concept of a trans-
formation that can bring the dynamics closer to a gradient
flow, providing insights into the transient behavior of the
TD(0) dynamics as well. Our results also include conditions
for the existence of such transformations and their impact
on the stability and convergence of the TD(0) dynamics. In
the nonlinear case, we demonstrated via Gromov’s result that
while a universal solution to the associated partial differential
equations does not always exist, solutions can be found for
certain systems. We provided an example illustrating the
transformation of nonlinear TD(0) dynamics and how it can
be brought closer to a gradient flow.

The findings offer a deeper understanding of the stability
and convergence properties of TD learning and also investi-
gate their transient behavior. Future work may explore further
extensions to other reinforcement learning algorithms and
their convergence behaviors under different conditions.
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APPENDIX

We recall the following result from [2].

Lemma 5.1: The equation

AX −XB = C,

where A ∈ Rr×r, B ∈ Rs×s, and X,C ∈ Rr×s has a
solution X if and only if the matrices[

A 0
0 B

]
and

[
A C
0 B

]
are similar, i.e., there exists some matrix T ∈ R(r+s)×(r+s)

such that [
A 0
0 B

]
= T

[
A C
0 B

]
T−1.

A. Gromov

For completeness and clarity of notations, we suitably
adopt a few notions and results from [3, Chapter 2]. Suppose
that Y and G are C∞-smooth vector bundles of dimensions
q and m over V , a subspace of dimension n, taken to
be Rn in most parts of what follows. Consider a linear
differential operator L : Y (1) → G, where Y (1) is the space
of 1-jets of germs of smooth sections of Y , given in local
coordinates θ1, . . . , θn on V as

L(y) = Ay +

n∑
i=1

Bi
∂y

∂θi
, (42)

where A : Rn → Rm×q and Bi : Rn → Rm×q are smooth
functions. Let now g be a smooth section of G and consider
the linear partial differential equation

L(y) = g. (43)

We say that (43) is underdetermined if q > m, determined
when q = m, and overdetermined when q < m. For a given



smooth section g, Gromov investigates the existence of a
right inverse M for operator L such that (L ◦ M)g = g.
A more suitable notion is that of a universal right inverse,
where one seeks for an operator M = M(L, g) such that
L(M(L, g)) = g for all smooth sections g. In this sense,
universal property ensures that the operator L “generically”
has a solution. This being said, we note that lack of existence
of a universal right inverse does not mean that a right inverse
does not exist for a particular choice of g. The following
result can be found in [3, Page 153-156].

Proposition 5.2 (Universal right inverse): Consider the
linear differential operator L given in (42). Then

1) If q = m, (43) does not have a right universal inverse.

2) If q > n(m + 1) + m, then the partial differential
equation (43) has a universal inverse; in particular, (43)
reduces to the system of algebraic equations

By = 0

A∗y = g, (44)

where

B =

B1

...
Bn

 and A∗ = A−
n∑

i=1

∂Bi

∂θi
. (45)

The condition in the second part is only sufficient, and
invertibility may be possible even with smaller q.


